3.706 \(\int \frac{1}{1+a+(-1+a) x^4} \, dx\)

Optimal. Leaf size=83 \[ \frac{\tan ^{-1}\left (\frac{\sqrt [4]{1-a} x}{\sqrt [4]{a+1}}\right )}{2 \sqrt{a+1} \sqrt [4]{1-a^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{1-a} x}{\sqrt [4]{a+1}}\right )}{2 \sqrt{a+1} \sqrt [4]{1-a^2}} \]

[Out]

ArcTan[((1 - a)^(1/4)*x)/(1 + a)^(1/4)]/(2*Sqrt[1 + a]*(1 - a^2)^(1/4)) + ArcTan
h[((1 - a)^(1/4)*x)/(1 + a)^(1/4)]/(2*Sqrt[1 + a]*(1 - a^2)^(1/4))

_______________________________________________________________________________________

Rubi [A]  time = 0.141138, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25 \[ \frac{\tan ^{-1}\left (\frac{\sqrt [4]{1-a} x}{\sqrt [4]{a+1}}\right )}{2 \sqrt{a+1} \sqrt [4]{1-a^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [4]{1-a} x}{\sqrt [4]{a+1}}\right )}{2 \sqrt{a+1} \sqrt [4]{1-a^2}} \]

Antiderivative was successfully verified.

[In]  Int[(1 + a + (-1 + a)*x^4)^(-1),x]

[Out]

ArcTan[((1 - a)^(1/4)*x)/(1 + a)^(1/4)]/(2*Sqrt[1 + a]*(1 - a^2)^(1/4)) + ArcTan
h[((1 - a)^(1/4)*x)/(1 + a)^(1/4)]/(2*Sqrt[1 + a]*(1 - a^2)^(1/4))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 16.7366, size = 63, normalized size = 0.76 \[ \frac{\operatorname{atan}{\left (\frac{x \sqrt [4]{- a + 1}}{\sqrt [4]{a + 1}} \right )}}{2 \sqrt [4]{- a + 1} \left (a + 1\right )^{\frac{3}{4}}} + \frac{\operatorname{atanh}{\left (\frac{x \sqrt [4]{- a + 1}}{\sqrt [4]{a + 1}} \right )}}{2 \sqrt [4]{- a + 1} \left (a + 1\right )^{\frac{3}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(1+a+(-1+a)*x**4),x)

[Out]

atan(x*(-a + 1)**(1/4)/(a + 1)**(1/4))/(2*(-a + 1)**(1/4)*(a + 1)**(3/4)) + atan
h(x*(-a + 1)**(1/4)/(a + 1)**(1/4))/(2*(-a + 1)**(1/4)*(a + 1)**(3/4))

_______________________________________________________________________________________

Mathematica [A]  time = 0.118108, size = 160, normalized size = 1.93 \[ \frac{-\log \left (\sqrt{a-1} x^2-\sqrt{2} \sqrt [4]{a-1} \sqrt [4]{a+1} x+\sqrt{a+1}\right )+\log \left (\sqrt{a-1} x^2+\sqrt{2} \sqrt [4]{a-1} \sqrt [4]{a+1} x+\sqrt{a+1}\right )-2 \tan ^{-1}\left (1-\sqrt{2} \sqrt [4]{\frac{a-1}{a+1}} x\right )+2 \tan ^{-1}\left (\sqrt{2} \sqrt [4]{\frac{a-1}{a+1}} x+1\right )}{4 \sqrt{2} \sqrt [4]{a-1} (a+1)^{3/4}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(1 + a + (-1 + a)*x^4)^(-1),x]

[Out]

(-2*ArcTan[1 - Sqrt[2]*((-1 + a)/(1 + a))^(1/4)*x] + 2*ArcTan[1 + Sqrt[2]*((-1 +
 a)/(1 + a))^(1/4)*x] - Log[Sqrt[1 + a] - Sqrt[2]*(-1 + a)^(1/4)*(1 + a)^(1/4)*x
 + Sqrt[-1 + a]*x^2] + Log[Sqrt[1 + a] + Sqrt[2]*(-1 + a)^(1/4)*(1 + a)^(1/4)*x
+ Sqrt[-1 + a]*x^2])/(4*Sqrt[2]*(-1 + a)^(1/4)*(1 + a)^(3/4))

_______________________________________________________________________________________

Maple [B]  time = 0.014, size = 170, normalized size = 2.1 \[{\frac{\sqrt{2}}{8+8\,a}\sqrt [4]{{\frac{1+a}{-1+a}}}\ln \left ({1 \left ({x}^{2}+\sqrt [4]{{\frac{1+a}{-1+a}}}x\sqrt{2}+\sqrt{{\frac{1+a}{-1+a}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{1+a}{-1+a}}}x\sqrt{2}+\sqrt{{\frac{1+a}{-1+a}}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}}{4+4\,a}\sqrt [4]{{\frac{1+a}{-1+a}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{1+a}{-1+a}}}}}}+1 \right ) }+{\frac{\sqrt{2}}{4+4\,a}\sqrt [4]{{\frac{1+a}{-1+a}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{1+a}{-1+a}}}}}}-1 \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(1+a+(-1+a)*x^4),x)

[Out]

1/8*((1+a)/(-1+a))^(1/4)/(1+a)*2^(1/2)*ln((x^2+((1+a)/(-1+a))^(1/4)*x*2^(1/2)+((
1+a)/(-1+a))^(1/2))/(x^2-((1+a)/(-1+a))^(1/4)*x*2^(1/2)+((1+a)/(-1+a))^(1/2)))+1
/4*((1+a)/(-1+a))^(1/4)/(1+a)*2^(1/2)*arctan(2^(1/2)/((1+a)/(-1+a))^(1/4)*x+1)+1
/4*((1+a)/(-1+a))^(1/4)/(1+a)*2^(1/2)*arctan(2^(1/2)/((1+a)/(-1+a))^(1/4)*x-1)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((a - 1)*x^4 + a + 1),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.241454, size = 242, normalized size = 2.92 \[ -\left (-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}\right )^{\frac{1}{4}} \arctan \left (\frac{{\left (a + 1\right )} \left (-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}\right )^{\frac{1}{4}}}{x + \sqrt{x^{2} +{\left (a^{2} + 2 \, a + 1\right )} \sqrt{-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}}}}\right ) + \frac{1}{4} \, \left (-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}\right )^{\frac{1}{4}} \log \left ({\left (a + 1\right )} \left (-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}\right )^{\frac{1}{4}} + x\right ) - \frac{1}{4} \, \left (-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}\right )^{\frac{1}{4}} \log \left (-{\left (a + 1\right )} \left (-\frac{1}{a^{4} + 2 \, a^{3} - 2 \, a - 1}\right )^{\frac{1}{4}} + x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((a - 1)*x^4 + a + 1),x, algorithm="fricas")

[Out]

-(-1/(a^4 + 2*a^3 - 2*a - 1))^(1/4)*arctan((a + 1)*(-1/(a^4 + 2*a^3 - 2*a - 1))^
(1/4)/(x + sqrt(x^2 + (a^2 + 2*a + 1)*sqrt(-1/(a^4 + 2*a^3 - 2*a - 1))))) + 1/4*
(-1/(a^4 + 2*a^3 - 2*a - 1))^(1/4)*log((a + 1)*(-1/(a^4 + 2*a^3 - 2*a - 1))^(1/4
) + x) - 1/4*(-1/(a^4 + 2*a^3 - 2*a - 1))^(1/4)*log(-(a + 1)*(-1/(a^4 + 2*a^3 -
2*a - 1))^(1/4) + x)

_______________________________________________________________________________________

Sympy [A]  time = 0.816406, size = 32, normalized size = 0.39 \[ \operatorname{RootSum}{\left (t^{4} \left (256 a^{4} + 512 a^{3} - 512 a - 256\right ) + 1, \left ( t \mapsto t \log{\left (4 t a + 4 t + x \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(1+a+(-1+a)*x**4),x)

[Out]

RootSum(_t**4*(256*a**4 + 512*a**3 - 512*a - 256) + 1, Lambda(_t, _t*log(4*_t*a
+ 4*_t + x)))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.217449, size = 360, normalized size = 4.34 \[ \frac{{\left (a^{4} - 2 \, a^{3} + 2 \, a - 1\right )}^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a + 1}{a - 1}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a + 1}{a - 1}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a^{2} - \sqrt{2}\right )}} + \frac{{\left (a^{4} - 2 \, a^{3} + 2 \, a - 1\right )}^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a + 1}{a - 1}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a + 1}{a - 1}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a^{2} - \sqrt{2}\right )}} + \frac{{\left (a^{4} - 2 \, a^{3} + 2 \, a - 1\right )}^{\frac{1}{4}}{\rm ln}\left (x^{2} + \sqrt{2} x \left (\frac{a + 1}{a - 1}\right )^{\frac{1}{4}} + \sqrt{\frac{a + 1}{a - 1}}\right )}{4 \,{\left (\sqrt{2} a^{2} - \sqrt{2}\right )}} - \frac{{\left (a^{4} - 2 \, a^{3} + 2 \, a - 1\right )}^{\frac{1}{4}}{\rm ln}\left (x^{2} - \sqrt{2} x \left (\frac{a + 1}{a - 1}\right )^{\frac{1}{4}} + \sqrt{\frac{a + 1}{a - 1}}\right )}{4 \,{\left (\sqrt{2} a^{2} - \sqrt{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((a - 1)*x^4 + a + 1),x, algorithm="giac")

[Out]

1/2*(a^4 - 2*a^3 + 2*a - 1)^(1/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*((a + 1)/(a
- 1))^(1/4))/((a + 1)/(a - 1))^(1/4))/(sqrt(2)*a^2 - sqrt(2)) + 1/2*(a^4 - 2*a^3
 + 2*a - 1)^(1/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*((a + 1)/(a - 1))^(1/4))/((a
 + 1)/(a - 1))^(1/4))/(sqrt(2)*a^2 - sqrt(2)) + 1/4*(a^4 - 2*a^3 + 2*a - 1)^(1/4
)*ln(x^2 + sqrt(2)*x*((a + 1)/(a - 1))^(1/4) + sqrt((a + 1)/(a - 1)))/(sqrt(2)*a
^2 - sqrt(2)) - 1/4*(a^4 - 2*a^3 + 2*a - 1)^(1/4)*ln(x^2 - sqrt(2)*x*((a + 1)/(a
 - 1))^(1/4) + sqrt((a + 1)/(a - 1)))/(sqrt(2)*a^2 - sqrt(2))